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Comparatively little has been published about transient thermal convection 
in partly open regions, for instance in Ref. [ 1,2,3,4 1 only one, namely 
Ref. [ 4 1 deals with the case of a spherical film. In this article we 
give an approximate solution to one problem concerning slowly varying 
thermal convection inside a spherical cavity. This particular solution 
differs from those normally employed previously Ref. [ 1.3.4 1. 

1. Basic Problem. 1. Assume that at the initial instant t = 0 liquid 
is at rest at temperature To and fills a spherical cavity of radius 3, 
the walls of which are kept permanently at a temperature T1, which differs 
from the initial temperature of the liquid, i.e. let us say that TO > T1. 

This kind of problem might represent, rather roughly, the case of liquid 
cooling in a spherical container, the walls of which are cooled by a 
stream outside. 

2. We take the origin of a Cartesian coordinate system X, Y, Z at the 

centre of the sphere and the 2 axis vertically upwards. We introduce the 
following nondimensional coordinates and time 

X=f, 
where w is the kinematic 

(14 

viscosity. The quantities which appear In the _ _ 
convection equations (see Ref. 13 1) are: hydrodynamic velocity V*, the 
pressure p* in excess of the equilibrium pressure at temperature T1, and 
the excess temperature 8 above Ti. We replace these by the corresponding 
nondimensional variables 

v* = J-V, 
( j 

2 
P*=Pl + P. 0' =(T"-- Tl)B* 

where p1 is the equilibrium density at Ti. 

The convection equations in Ref. [3 1 then become: 

(1.2) 
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yi. + (Vg) v = - vp + GBn + AV ;G= 
gp (To - T,) 11” 

vs (1.3) 
a0 
z +(!-A) 0 - + AO, divV=O 

here x is the thermal conductivity, II is the unit vector along the 2 
axis. 

3. The initial and boundary conditions satisfying the requiremedts of 
paragraph 1 and the usual assumption of no slip at the wall are 

v = 0, 6 = 1 for t = 0; v = 0, o=o for r = i (1.4) 
where r is the dimensionless radius vector. 

In addition we require the solution to be finite in accordance with 
physical conditions at the centre of the sphere. 

2. Method of Solution. Under the assumption that conditions vary slowly 
with time the corresponding Grashof number is small, and we may look for 
a solution of (1.3) with boundary conditions (1.4) in terms of a series 
for V, p and 0 in powers of Grashof number. Ref. [ 5 1. 

\. = &‘+‘) + G”V(‘) -t_ . . . , p = G (I,(‘) + G?p(“) + . . . 0 = e(O) + Get’) + G’8(2) + . . (2.1) 

Substituting these into (1.3) and into boundary condition (1.4). we get 
a linear equation for successive approximations. We will confine ourselves 
to zero and first approximations. 

2. In the zero order approximation we get the equation 

(2.2) 

The boundary condition for this equation comes from (1.4). 
initial condition can be obtained from (1.4) so that when t = 
Thus the boundary conditions for (2.2) are, 

e(o) = I for t = 0; f&O) = 0 for r = 1 

In the first order approximation we get the equations 

(2.3) 

aw - = -VP(l) + f$O)n + AV(l,, 
(11 

diy V(l)= 0 (2.4) 
ho 

i)t + (+)A) 6(O) = i be(l), 

with zero boundary conditions 
V(l) ;= 0, 6(l) --_ 0 for t = 0; V(l) = 0, e(1) ~0 for r = 1 (2.5) 

and the condition that the solution is finite at the centre of the sphere. 

3. The solution of the zero order approximation (2.2) with the bound- 
ary conditions (2.3) is known (see. for instance, Ref. [ 6 1 ). To solve 
equations (2.4) in the first approximation with the corresponding bound- 
ary conditions we shall use the following method. 

Introducing the notation div V (l) s f-2 and taking the divergence of the 
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first equation (2.4) we obtain 

&2-A* = - A$r) + div (0(O)@ 

It follows from this that p 11) satisfies 

Apt”) = div (9(“)o) 

since the second of equations (2.4) gives 
an 
~‘“ACLO 

(2.6) 

(2.7) 

(2.6) 

Therefore p(i) must be found in the solution of (2.7). This equation 
is solved by a known method. The solutions, which are bounded at the 

contain unknown functions of time. We choose one centre of the sphere[i) 
;fljhese solutions p and the unknown functions of time so that. when 

is substituted into the first of equations (2.41 the resulting solu- 
tion for V(l) which satisfies the boundary conditions (2.51 and is bounded 
at the centre of the sphere leads to the conditions 

a=0 for r=l (2.9) 

Then fz will satisfy equation (2.81, with the boundary condition (2.91 
and the initial condition 

fl=O for t=O (2.10) 

which is valid because of (2.5). It follows that hl; = 0. i.e. the second 
equation (2.4) is fulfilled, as is known from Ref. [ 7 1. We can now solve 

the third of euuations (2.4). 

3. Sofmtfem of the problem and brfef discussion of results. 1. When 
we substitute the solution to (2.21 with boundary conditions (2.3) (see, 
for instance Ref. [ 6 1 ) 

(3.1) 

into equation (2.7) we find that the solution for p (1) which is finite 
at the centre of the sphere is 

aD 

,(I) =t - kWt d sin k7cr _--~ 
(kn)a exp Q dr r -I- s @jr] COY 4, (3.2) 

where +!J is the polar coordinate in the spherical system and r(t) is, so 
far, an unknown function of time. 

2. To solve the equations for the first approximation we use the 
complete system of orthogonal functions which are solutions to the equa- 
tion 

A@(r)+X(P(r)=O (3.3) 

where A is a constant, with the boundary condition #= 0 for r = 1 and 
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the condition that the solution is bounded at the centre of the sphere. 

This system of functions is as follows [ 7 1 : 

(3.4) 

where ind c s n, i, 
ie tions. c n 

I have integf.af values. Here J,1/2 are Bessel func- 

i are their roots, Pn associated Legendre functions, and 4 

is the azimuth coordinate in the spherical system. 

If we substitute (3.1) and (3.2) into the first of equations (2.4). ne 
obtain, by known methods, using (3.4) 

0 
)’ 

x -2 (1) - Fi (t) r-“rJ2+x,l (Ei(*b) P*(l) (p) cos p (3.5) 

vu(l) = 2 Fi (t)rJltJ2+,,, (ei(*)r) Pt2)(')p sir1 ‘p 
i=l 

I.,(‘) = 2 5 Fi (t)r-w,+*,* (ei(*)r) Pz (!A) + i Ki (t) .-‘k$(ci(%) 
i=1 i=l 

where 

Fi E - exp [ - (si(*))’ t] 
s 

Cj (t) exp (ai( dt , 
0 

2 

” = [ J;+l,, (ci’*‘)]2 
; 
,$ 

r’lrH (r, t) J+_,,, (ti%) dr, 
1 a 1 

HST z-h-Th, 
( > 

OD 

h zs - y& (_ $tl 

ii=1 

(3.6) 

and the coefficients Ki( t) and the function e(t) are determined by the 

system 

4 Ki + (zi(0))r Ki = Nis + Mi, 5 aiKi = - M’ 
i=l 

(3.7) 

for zero initial conditions (the second of equations (3.71 is obtained 

from (2.9) ). Moreover 

1 1 

&fir-&’ 

s 
r”%@‘) (r,t) J,,, (c.(O)r)dr, 1 Ni EE $ 

s 
r”‘J,,, (tito)r) dr 

0 0 

8 = (J,, ’ (E.(O)))2 
1 1 (3.3) 

Q. f I _,.(O)J 1 lfllr (?i’“‘)* tii E - 2ciW,+,!* (Oi@‘), lik~BiFi (3.9) 
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‘Is obtain the solution of the third eauation (2.4) in a similar ray, 

&I) = 
5 Bj (t) r-~'tJt+',I(Cj'lfr)eOS ~ (3.10) 
j=1 

where 
t 

Bj E - exp I- (~j”‘,t ‘1 
s 

Qj (t) exp [(tj(‘))2 f] dL 
0 

i=l i=l 

The solution to the sjetem of equations (3.7) for the coefficients Ki 
and the function r(t), was found when only the first three terms were 
retained (i = 1.2,3). However we shall not introduce this here since it 
is nnwfeldj. 

3. We note some special properties of convection, which can be deduced 
from the approximate eolutjon to our problem. 

Writing down the equation of flow in spherical coordinates, we have 

It follows from (3.12) that the liquid moves in vertical (r. $1 planes 
which go through the centre of.the sphere, and the motion ia of the same 
form in all these planes. The motion Is axially gymmetrical, the hotter 
liquid rising at the centre of the sphere. The liauid sinks, during cool- 
ing, at the walls. (If To < T1 the condition would be reversed.) Fig. 1 
shows etroamlinee calculated from formulas (3.5) with the following 
values of parameters 0 c 6.75 (water at 2OOC.j C = 300. and the nondlaene- 
ional time t = 1. Three coefficients Ei were used. 

The temperature distribution in the liquid corresponds to it.8 motion. 
Fig. 2. plotted with the same values as above, shows a plane section 
4 = conet. revealing a family of isotherms at a spacing of 0.1. Formulae 
(3.1) and (3.10) were used in the calculations, with three terms in the 
summation (3.1) and three coefficients Ki. The temperature decreases in 
the direction snag from the centre. The upper part of the region is, on 
the average, at a higher temperature than the lower. The liquid is cooled 
least in a region located at about one third radius above the centre 
(where there Is purely molecular conductivity). 
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@ 

0 I1 0 
Fig. 1. 

In order to assess the effect 

@J 0 0 

Fig. 2. 

of convection, in this approximation, 

on the rate of cooling of the liquid as a whole, we consider the integral 

from the convective part of the temperature @ over the volume V 

(3.13) 

For relatiiiely small values of 0 (weak convection) this can be considered 

proport ional, with sufficient accuracy, to the excess of the internal 

energy of the liquid over the value corresponding to full cooling of the 

liquid down to wall temperature T1. If we insert the expression @ (1) from 

(3.10) we find that the second integral on the right vanishes. This shows 

that, in this approximation, the energy of the liquid is the same as that 

of a solid with the same thermal characteristics and with the same bound- 

ary conditions (the kinetic energy of the liquid is neglected since it is 

of the second order of magnitude compared with C). Thus the approximation 

shows that convection fails to affect the rate of cooling of the liquid 

as a whole. This approximation represents a temperature redistribution 

within the liquid such that the liquid in the top part of the space heats 

up at the expense of that in the lower. The effect of increasing the rate 

of cooling as a whole on convection should become clear in further appro- 

ximations. 

The author is indebted to I.G. Shaposhnikov for suggesting the invest- 

igation. 
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